Color Inference Using an Enhanced Fuzzy Method
نویسندگان
چکیده
Color information recognition methods based on the RGB color model, which is designed on the basis of static fuzzy inference rules, are being widely used at present. However, these methods have certain limitations because of the nature of the model used: detachment of human vision and limited choice of environment. In this paper, we propose a method based on the HSI model and a new inference process that resembles the human vision recognition process. This method allows the user to add, delete, or update inference rules. In our method, membership intervals are designed with sine and cosine functions in the H channel and trigonometric style functions in the S and I channels. The membership degree is computed via an interval merging process. Then, inference rules are applied to the result in order to infer the color information. Experimental results show that our method is more intuitive and efficient than that based on the RGB model.
منابع مشابه
Robust Potato Color Image Segmentation using Adaptive Fuzzy Inference System
Potato image segmentation is an important part of image-based potato defect detection. This paper presents a robust potato color image segmentation through a combination of a fuzzy rule based system, an image thresholding based on Genetic Algorithm (GA) optimization and morphological operators. The proposed potato color image segmentation is robust against variation of background, distance and ...
متن کاملNusselt Number Estimation along a Wavy Wall in an Inclined Lid-driven Cavity using Adaptive Neuro-Fuzzy Inference System (ANFIS)
In this study, an adaptive neuro-fuzzy inference system (ANFIS) was developed to determine the Nusselt number (Nu) along a wavy wall in a lid-driven cavity under mixed convection regime. Firstly, the main data set of input/output vectors for training, checking and testing of the ANFIS was prepared based on the numerical results of the lattice Boltzmann method (LBM). Then, the ANFIS was develope...
متن کاملFuzzy Inference System Approach in Deterministic Seismic Hazard, Case Study: Qom Area, Iran
Seismic hazard assessment like many other issues in seismology is a complicated problem, which is due to a variety of parameters affecting the occurrence of an earthquake. Uncertainty, which is a result of vagueness and incompleteness of the data, should be considered in a rational way. Using fuzzy method makes it possible to allow for uncertainties to be considered. Fuzzy inference system,...
متن کاملPrediction of slope stability using adaptive neuro-fuzzy inference system based on clustering methods
Slope stability analysis is an enduring research topic in the engineering and academic sectors. Accurate prediction of the factor of safety (FOS) of slopes, their stability, and their performance is not an easy task. In this work, the adaptive neuro-fuzzy inference system (ANFIS) was utilized to build an estimation model for the prediction of FOS. Three ANFIS models were implemented including g...
متن کاملFuzzy Inference System Approach in Deterministic Seismic Hazard, Case Study: Qom Area, Iran
Seismic hazard assessment like many other issues in seismology is a complicated problem, which is due to a variety of parameters affecting the occurrence of an earthquake. Uncertainty, which is a result of vagueness and incompleteness of the data, should be considered in a rational way. Using fuzzy method makes it possible to allow for uncertainties to be considered. Fuzzy inference system,...
متن کامل